by Bernhard Preim, Monique Meuschke
Abstract:
Animation is a potentially powerful instrument to convey complex information with movements, smooth transitions between different states that employ the strong human capabilities to perceive and interpret motion. Animation is a natural choice to display time-dependent data where the dynamic nature of the data is mapped to a kind of video (temporal animation). Clipping planes may be smoothly translated and object transparency adapted to control visibility and further support emphasis of spatial relations, e.g. around a tumor. Animation, however, may also be employed for static data, e.g. to move a camera along a predefined path to convey complex anatomical structures. Virtual endoscopy, where the virtual camera is moved inside an air-filled or fluid-filled structure is a prominent example for these non-temporal animations. Animations, however, are complex visualizations that may depict a larger number of changes in a short period of time. Thus, they need to be assessed in their capability to actually convey information. In this paper, we give a survey of temporal and non-temporal animated visualizations focussed on medical applications and discuss the research potential that arises. To be employed more widely, cognitive limitations, e.g. change blindness, need to be considered. The reduction of complexity in temporal animations is an essential topic to enable the detection and interpretation of changes. Emphasis techniques may guide the user’s attention and improve the perception of essential features. Finally, interaction beyond the typical video recorder functionality is considered. Although our focus is medicine, the discussion of a research agenda is partially based on cartography, where animation is widely used.
Reference:
Medical Animations: A Survey and a Research Agenda (Bernhard Preim, Monique Meuschke), In VCBM 2019 - Eurographics Workshop on Visual Computing for Biology and Medicine, 2019.
Bibtex Entry:
@inproceedings{preim_medical_2019,
	address = {Brno, Czech Republic},
	title = {Medical {Animations}: {A} {Survey} and a {Research} {Agenda}},
	abstract = {Animation is a potentially powerful instrument to convey complex information with movements, smooth transitions between different states that employ the strong human capabilities to perceive and interpret motion. Animation is a natural choice to display time-dependent data where the dynamic nature of the data is mapped to a kind of video (temporal animation). Clipping planes may be smoothly translated and object transparency adapted to control visibility and further support emphasis of spatial relations, e.g. around a tumor. Animation, however, may also be employed for static data, e.g. to move a camera along a predefined path to convey complex anatomical structures. Virtual endoscopy, where the virtual camera is moved inside an air-filled or fluid-filled structure is a prominent example for these non-temporal animations. Animations, however, are complex visualizations that may depict a larger number of changes in a short period of time. Thus, they need to be assessed in their capability to actually convey information. In this paper, we give a survey of temporal and non-temporal animated visualizations focussed on medical applications and discuss the research potential that arises. To be employed more widely, cognitive limitations, e.g. change blindness, need to be considered. The reduction of complexity in temporal animations is an essential topic to enable the detection and interpretation of changes. Emphasis techniques may guide the user’s attention and improve the perception of essential features. Finally, interaction beyond the typical video recorder functionality is considered. Although our focus is medicine, the discussion of a research agenda is partially based on cartography, where animation is widely used.},
	booktitle = {{VCBM} 2019 - {Eurographics} {Workshop} on {Visual} {Computing} for {Biology} and {Medicine}},
	author = {Preim, Bernhard and Meuschke, Monique},
	year = {2019}
}